Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning

Author:

Wang Jiaxue12ORCID,Wei Yujiao12ORCID,Sun Zheng12ORCID,Gu Shixiang3,Bai Shihan3,Chen Jinming3,Chen Jing3,Hong Yongsheng45,Chen Yiyun12ORCID

Affiliation:

1. School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China

2. Soil Survey and Monitoring Lab of the Wuhan University, Wuhan 430079, China

3. Yunnan Institute of Water and Hydropower Engineering Investigation, Design and Research, Kunming 650021, China

4. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

5. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Soil erodibility (K) refers to the inherent ability of soil to withstand erosion. Accurate estimation and spatial prediction of K values are vital for assessing soil erosion and managing land resources. However, as most K-value estimation models are empirical, they suffer from significant extrapolation uncertainty, and traditional studies on spatial prediction focusing on individual empirical K values have neglected to explore the spatial pattern differences between various empirical models. This work proposed a universal framework for selecting an optimal soil-erodibility map using empirical models enhanced by machine learning. Specifically, three empirical models, namely, the erosion-productivity impact calculator model (K_EPIC), the Shirazi model (K_Shirazi), and the Torri model (K_Torri) were used to estimate K values. Random Forest (RF) and Gradient-Boosting Decision Tree (GBDT) algorithms were employed to develop prediction models, which led to the creation of three K-value maps. The spatial distribution of K values and associated environmental covariates were also investigated across varying empirical models. Results showed that RF achieved the highest accuracy, with R2 of K_EPIC, K_Shirazi, and K_Torri increasing by 46%, 34%, and 22%, respectively, compared to GBDT. And distinctions among environmental variables that shape the spatial patterns of empirical models have been identified. The K_EPIC and K_Shirazi are influenced by soil porosity and soil moisture. The K_Torri is more sensitive to soil moisture conditions and terrain location. More importantly, our study has highlighted disparities in the spatial patterns across the three K-value maps. Considering the data distribution, spatial distribution, and measured K values, the K_Torri model outperformed others in estimating soil erodibility in the plateau lake watershed. This study proposed a framework that aimed to create optimal soil-erodibility maps and offered a scientific and accurate K-value estimation method for the assessment of soil erosion.

Funder

High-Resolution Earth Observation System Major Special Government Comprehensive Governance Application and Scale Industrialization Demonstration Project

LIESMARS Special Research Funding

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3