Developing a Generalizable Spectral Classifier for Rhodamine Detection in Aquatic Environments

Author:

Pérez-García Ámbar1ORCID,Martín Lorenzo Alba1ORCID,Hernández Emma1ORCID,Rodríguez-Molina Adrián1ORCID,van Emmerik Tim H. M.2ORCID,López José F.1

Affiliation:

1. Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, 35001 Las Palmas, Spain

2. Hydrology and Environmental Hydraulics Group, Wageningen University, 6708 BP Wageningen, The Netherlands

Abstract

In environmental studies, rhodamine dyes are commonly used to trace water movements and pollutant dispersion. Remote sensing techniques offer a promising approach to detecting rhodamine and estimating its concentration, enhancing our understanding of water dynamics. However, research is needed to address more complex environments, particularly optically shallow waters, where bottom reflectance can significantly influence the spectral response of the rhodamine. Therefore, this study proposes a novel approach: transferring pre-trained classifiers to develop a generalizable method across different environmental conditions without the need for in situ calibration. Various samples incorporating distilled and seawater on light and dark backgrounds were analyzed. Spectral analysis identified critical detection regions (400–500 nm and 550–650 nm) for estimating rhodamine concentration. Significant spectral variations were observed between light and dark backgrounds, highlighting the necessity for precise background characterization in shallow waters. Enhanced by the Sequential Feature Selector, classification models achieved robust accuracy (>90%) in distinguishing rhodamine concentrations, particularly effective under controlled laboratory conditions. While band transfer was successful (>80%), the transfer of pre-trained models posed a challenge. Strategies such as combining diverse sample sets and applying the first derivative prevent overfitting and improved model generalizability, surpassing 85% accuracy across three of the four scenarios. Therefore, the methodology provides us with a generalizable classifier that can be used across various scenarios without requiring recalibration. Future research aims to expand dataset variability and enhance model applicability across diverse environmental conditions, thereby advancing remote sensing capabilities in water dynamics, environmental monitoring and pollution control.

Funder

European Social Fund Plus

Vicerrectorado de Investigación y Transferencia de la Universidad de las Palmas de Gran Canaria

OASIS-HARMONIE project

PERSEO project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3