Assessing Reservoir Performance under Climate Change. When Is It Going to Be Too Late If Current Water Management Is Not Changed?

Author:

Chadwick CristiánORCID,Gironás JorgeORCID,Barría Pilar,Vicuña Sebastián,Meza Francisco

Abstract

Climate change is modifying the way we design and operate water infrastructure, including reservoirs. A particular issue is that current infrastructure and reservoir management rules will likely operate under changing conditions different to those used in their design. Thus, there is a big need to identify the obsolescence of current operation rules under climate change, without compromising the proper treatment of uncertainty. Acknowledging that decision making benefits from the scientific knowledge, mainly when presented in a simple and easy-to-understand manner, such identification—and the corresponding uncertainty—must be clearly described and communicated. This paper presents a methodology to identify, in a simple and useful way, the time when current reservoir operation rules fail under changing climate by properly treating and presenting its aleatory and epistemic uncertainties and showing its deep uncertainty. For this purpose, we use a reliability–resilience–vulnerability framework with a General Circulation Models (GCM) ensemble under the four Representative Concentration Pathways (RCP) scenarios to compare the historical and future long-term reservoir system performances under its current operation rule in the Limarí basin, Chile, as a case study. The results include percentiles that define the uncertainty range, showing that during the 21st century there are significant changes at the time-based reliability by the 2030s, resilience between the 2030s and 2040s, volume-based reliability by the 2080s, and the maximum failure by the 2070s. Overall, this approach allows the identification of the timing of systematic failures in the performance of water systems given a certain performance threshold, which contributes to the planning, prioritization and implementation timing of adaptation alternatives.

Funder

Fondo Nacional de Ciencia y Tecnología

International Development Research Centre

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference111 articles.

1. A Report Produced for the G20 Presidency of Germany,2017

2. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5);Stocker,2013

3. Narrowing the climate information usability gap

4. The Impact of Scientific Information on Ecosystem Management: Making Sense of the Contextual Gap Between Information Providers and Decision Makers

5. Using climate information for supporting climate change adaptation in water resource management in South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3