Influence of θ′ Phase Cutting on Precipitate Hardening of Al–Cu Alloy during Prolonged Plastic Deformation: Molecular Dynamics and Continuum Modeling

Author:

Krasnikov Vasiliy S.ORCID,Mayer Alexander E.,Pogorelko Victor V.,Gazizov Marat R.

Abstract

We investigate the prolonged plastic deformation of aluminum containing θ′ phase with a multistage approach combining molecular dynamics (MD), continuum modeling (CM) and discrete dislocation dynamics (DDD). The time of performed MD calculations is sufficient for about a hundred dislocation–precipitate interactions. With this number of interactions, the inclusion of θ′ is not only cut, but also scattered into individual copper atoms in an aluminum matrix. Damage to the crystal structure of inclusion and activation of the cross-slip of dislocation segments cause a decrease in acting stresses in the MD system. The rate of this effect depends on θ′ diameter and occurs faster for small inclusions. The effect of decreasing the resistance of precipitate is further introduced into the dislocation–precipitate interaction CM by reducing the precipitate effective diameter with an increase in the number of interactions. A model of dislocation–precipitate interaction accounting for the softening of inclusions is further implemented into DDD. Dependences of flow stress in aluminum with θ′ phases on volume fraction and typical diameter of precipitates are obtained. Manifestation of inclusion softening is possible in such an alloy, which leads to the flow stress decrease during deformation. The range of volume fractions and typical diameters of θ′ phases corresponding to the possible decrease in flow stress is distinguished.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference79 articles.

1. Effect of Strain Rate Upon Plastic Flow of Steel

2. Shear Localization: Occurrence Theories and Applications;Bai,1992

3. The Physics and Mathematics of Adiabatic Shear Bands;Wright,2002

4. Shear Localization: A Historical Overview

5. Deformation of age-hardened aluminium alloy crystals—I plastic flow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3