Short-Term Load Forecasting Using an Attended Sequential Encoder-Stacked Decoder Model with Online Training

Author:

Henselmeyer SylwiaORCID,Grzegorzek MarcinORCID

Abstract

The paper presents a new approach for the prediction of load active power 24 h ahead using an attended sequential encoder and stacked decoder model with Long Short-Term Memory cells. The load data are owned by the New York Independent System Operator (NYISO) and is dated from the years 2014–2017. Due to dynamics in the load patterns, multiple short pieces of training on pre-filtered data are executed in combination with the transfer learning concept. The evaluation is done by direct comparison with the results of the NYISO forecast and additionally under consideration of several benchmark methods. The results in terms of the Mean Absolute Percentage Error range from 1.5% for the highly loaded New York City zone to 3% for the Mohawk Valley zone with rather small load consumption. The execution time of a day ahead forecast including the training on a personal computer without GPU accounts to 10 s on average.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. A regression-based approach to short-term system load forecasting

2. Short Term Electric Load Forecasting;Hong,2010

3. Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter

4. Short-Term Load Forecasting Using ARIMA Model For Karnataka State Electrical Load;Shilpa;Int. J. Eng. Res. Dev.,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3