Abstract
Adaptive and learning methods are proposed and compared to control DC motors actuating control surfaces of unmanned underwater vehicles. One type of adaption method referred to as model-following is based on algebraic design, and it is analyzed in conjunction with parameter estimation methods such as recursive least squares, extended least squares, and batch least squares. Another approach referred to as deterministic artificial intelligence uses the process dynamics defined by physics to control output to track a necessarily specified autonomous trajectory (sinusoidal versions implemented here). In addition, one instantiation of deterministic artificial intelligence uses 2-norm optimal feedback learning of parameters to modify the control signal, while another instantiation is presented with proportional plus derivative adaption. Model-following and deterministic artificial intelligence are simulated, and respective performance metrics for transient response and input tracking are evaluated and compared. Deterministic artificial intelligence outperformed the model-following approach in minimal peak transient value by a percent range of approximately 2–70%, but model-following achieved at least 29% less error in input tracking than deterministic artificial intelligence. This result is surprising and not in accordance with the recently published literature, and the explanation of the difference is theorized to be efficacy with discretized implementations.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献