Abstract
This paper is devoted to the study of the chemotaxis model for drug delivery purposes. The pattern formation for a volume-filling with nonlinear diffusive terms is investigated. The proposed mathematical model is governed by a reaction–diffusion system modeling the interaction between the cell density and the concentration of the chemoattractant. We investigate the pattern formation for the model using Turing’s principle and linear stability analysis. An asymptotic expansion is used to linearize the nonlinear diffusive terms. Next, we introduce an implicit finite volume scheme; it is presented on a triangular mesh satisfying the orthogonality condition. Finally, numerical results showing the formation of the spatial pattern for the chemotaxis model are presented and analyzed. The results demonstrate promising progress in understanding the process of controlling and designing targeted drug delivery.
Funder
Deanship of Scientific Research King Saud University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献