Neural Network Control for Trajectory Tracking and Balancing of a Ball-Balancing Robot with Uncertainty

Author:

Jang Hyo-GeonORCID,Hyun Chang-Ho,Park Bong-SeokORCID

Abstract

In this paper, a neural-network-based control method to achieve trajectory tracking and balancing of a ball-balancing robot with uncertainty is presented. Because the ball-balancing robot is an underactuated system and has nonlinear couplings in the dynamic model, it is challenging to design a controller for trajectory tracking and balancing. Thus, various approaches have been proposed to solve these problems. However, there are still problems such as the complex control system and instability. Therefore, the objective of this paper was to propose a solution to these problems. To this end, we developed a virtual angle-based control scheme. Because the virtual angle was used as the reference angle to achieve trajectory tracking while keeping the balance of the ball-balancing robot, we could solve the underactuation problem using a single-loop controller. The radial basis function networks (RBFNs) were employed to compensate uncertainties, and the controller was designed using the dynamic surface control (DSC) method. From the Lyapunov stability theory, it was proven that all errors of the closed-loop control system were uniformly ultimately bounded. Therefore, the control system structure was simple and ensured stability in achieving simultaneous trajectory tracking and balancing of the ball-balancing robot with uncertainty. Finally, the simulation results are given to verify the performance of the proposed controller through comparison results. As a result, the proposed method showed a 19.2% improved tracking error rate compared to the existing method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Using the Raspberry PI2 Module and the Brain-Computer Technology for Controlling a Mobile Vehicle;Paszkiel,2020

2. The ballbot: An omnidirectional balancing mobile robot

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3