Fraud Audit Based on Visual Analysis: A Process Mining Approach

Author:

Rodríguez-Quintero Jorge-FélixORCID,Sánchez-Díaz Alexander,Iriarte-Navarro Leonel,Maté Alejandro,Marco-Such ManuelORCID,Trujillo JuanORCID

Abstract

Among the knowledge areas in which process mining has had an impact, the audit domain is particularly striking. Traditionally, audits seek evidence in a data sample that allows making inferences about a population. Mistakes are usually committed when generalizing the results and anomalies; therefore, they appear in unprocessed sets; however, there are some efforts to address these limitations using process-mining-based approaches for fraud detection. To the best of our knowledge, no fraud audit method exists that combines process mining techniques and visual analytics to identify relevant patterns. This paper presents a fraud audit approach based on the combination of process mining techniques and visual analytics. The main advantages are: (i) a method is included that guides the use of the visual capabilities of process mining to detect fraud data patterns during an audit; (ii) the approach can be generalized to any business domain; (iii) well-known process mining techniques are used (dotted chart, trace alignment, fuzzy miner…). The techniques were selected by a group of experts and were extended to enable filtering for contextual analysis, to handle levels of process abstraction, and to facilitate implementation in the area of fraud audits. Based on the proposed approach, we developed a software solution that is currently being used in the financial sector as well as in the telecommunications and hospitality sectors. Finally, for demonstration purposes, we present a real hotel management use case in which we detected suspected fraud behaviors, thus validating the effectiveness of the approach.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliometric analysis of artificial intelligence trends in auditing and fraud detection;Corporate Governance and Organizational Behavior Review;2024

2. Enhancing Loan Application Business Process Model with Multi-perspective Process Mining;2023 11th International Conference on Cyber and IT Service Management (CITSM);2023-11-10

3. A Process Discovery and Conformance Checking Integration System for the Optimization of Resources in the Application of Process Mining;2023 18th Iberian Conference on Information Systems and Technologies (CISTI);2023-06-20

4. Big data analytics and auditor judgment: an experimental study;Accounting Research Journal;2023-04-20

5. Behavioral and Performance Analysis of a Real-Time Case Study Event Log: A Process Mining Approach;Applied Sciences;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3