Advancing Photodynamic Therapy for Endodontic Disinfection with Nanoparticles: Present Evidence and Upcoming Approaches

Author:

Alfirdous Rayyan A.,Garcia Isadora M.ORCID,Balhaddad Abdulrahman A.ORCID,Collares Fabrício M.ORCID,Martinho Frederico C.ORCID,Melo Mary Anne S.ORCID

Abstract

The persistence of microorganisms in the root canal system is one of the leading causes of root canal treatment failure. Root canal anatomy is complex, and it is often a challenge to obtain optimal disinfection. Biofilms of putative pathogens hidden inside dentin tubules and other root canal ramifications may limit current disinfection protocols. The search for additional disinfection of the root canal has been intensely carried out over the last twenty years. Antimicrobial photodynamic therapy (aPDT) is an adjunctive, conservative, non-selective bacterial kill approach. aPDT has been used to improve root canals disinfection without inducing bacterial resistance. This review focuses on the up-to-date aPDT performance and upcoming promising strategies for disinfection of the root canal system. First, we summarized the barriers encountered by photosensitizer (PS) and light delivery applied to root canal disinfection. Second, we compile the most updated clinical literature. A systematic search for scientific articles was conducted in PubMed, MEDLINE, SCOPUS, and EMBASE to screen the related in vivo studies about this theme. Third, we summarized and critically analyzed the current developments to overcome the aPDT limitations, and we revealed upcoming perspectives in this scoping literature review. We present a timely and opportune review article focusing on the significant potential of aPDT in endodontic disinfection. aPDT offers multiple capabilities that may be considered toward the root canal system’s disinfection with future outlooks in nanosized-platforms’ design and performance.

Funder

IN-SPIRE Grant Program- University of Maryland School of Dentistry

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3