Abstract
As a preliminary study for bearingless permanent magnet slice motor (BPMSM) development, an effective means for BPMSM mechanical structure optimization is proposed here by developing a virtual prototype based on Ansoft Maxwell to realize overall performance improvements. First, the sensitivity evaluation index of the candidate mechanical structural parameters for individual BPMSM performance is constructed for selection. Orthogonal tests are performed to determine the dominant mechanical structural parameters to be optimized by utilizing monitored data based on Ansoft Maxwell. A linear regression model of the mechanical structural parameters for specific performances is obtained by utilizing the gradient descent method. Then, a multi-structural optimization regression model of the selected dominant mechanical structural parameters for overall performance is established using an analytic hierarchy process and solved using a genetic algorithm. The simulation results show that the performance of the optimized BPMSM has been comprehensively improved. Specifically, the passive axial stiffness, passive tilting stiffness, force-current coefficient, and motor efficiency increased by 56.4%, 71.3%, 19.6%, and 8.7%, respectively.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献