Toll-Like Receptors 1/2/4/6 and Nucleotide-Binding Oligomerization Domain-Like Receptor 2 Are Key Damage-Associated Molecular Patterns Sensors on Periodontal Resident Cells

Author:

Chen Yu,Wang Xiao Xiao,Ng Corrie H. C.,Tsao Sai Wah,Leung Wai KeungORCID

Abstract

Background: Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are innate, damage-associated molecular patterns (DAMP) sensors. Their expressions in human periodontal resident cells and reactions toward irritations, such as hypoxia and lipopolysaccharide (LPS), remain not well characterized. This cross-sectional study aimed to investigate and characterize TLRs, NOD1/2 and NLRP1/2 expressions at the dento-gingival junction. Methods: Immunohistochemistry screening was carried out on periodontal tissue biopsies sections, while selected DAMP sensors signal and protein expression under Escherichia coli LPS (2 µg/mL) and/or hypoxia (1% O2), 24 h, by human gingival keratinocytes (HGK) or fibroblasts (HGF) were investigated. Results: Positive TLR1/2/4/5/6, NOD1/2 and NLRP1/2 immunostaining were observed in healthy and periodontitis biopsies with apparently more pocket epithelial cells positive for TLR2, TLR4 and NOD1/2. TLR1-6, NOD1/2 and NLRP1/2 messengers were detected in gingival/periodontal biopsies as well as healthy HGK and HGF explants. LPS and/or hypoxia induced signals and protein upregulation of NOD2 in HGKs or TLR1/6 and NOD2 in HGFs. Conclusion: Transcripts and proteins of TLR1/2/4/5/6, NOD1/2 and NLRP1/2 were expressed in human periodontal tissue in health and disease. Putting all observations together, NOD2, perhaps with TLR1/2/4/6, might be considered key, damage-associated molecular pattern sensors on periodontal resident cells.

Funder

Research Council of Hong Kong Special Administrative Region

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3