Abstract
Bi-composite surface texture configurations are proposed to study the friction performance of a mechanical seal under low speed. Three sets of comparative experiments were designed. They involved friction pairs with different pairing materials, single texture patterns, and bi-composite surface texture configurations. Tribological performances, such as friction coefficient, wear quantity, and surface topography, were measured. The research results showed that the average friction coefficient and surface temperature rise of the 3-C3 group (triangular texture in SSiC–conventional spiral groove in SSiC) were only 0.052 and 3.8 °C, respectively, which was the smallest friction coefficient and lowest temperature rise of all the test subjects. What’s more, the wear of M120D was mainly caused by the cutting effect of the texture edges, the adhesive wear of the non-textured areas, and the secondary wear caused by debris from the internal texture. It was indicated that the bi-composite patterns of spiral-triangle could produce a ‘synergistic effect’ by improving tribological performance and reaching lower friction in low-rotational-speed operation, which could provide a basis for designing a long-lasting and exceptionally reliable mechanical seal.
Funder
National Natural Science Foundation of China
Ningbo Natural Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献