Tribological Performance of Friction Pairs with Different Materials and Bi-Composite Surface Texture Configurations

Author:

Lu JunjieORCID,Wang Tianrui,Ding Xuexing,Song Hui,Li He

Abstract

Bi-composite surface texture configurations are proposed to study the friction performance of a mechanical seal under low speed. Three sets of comparative experiments were designed. They involved friction pairs with different pairing materials, single texture patterns, and bi-composite surface texture configurations. Tribological performances, such as friction coefficient, wear quantity, and surface topography, were measured. The research results showed that the average friction coefficient and surface temperature rise of the 3-C3 group (triangular texture in SSiC–conventional spiral groove in SSiC) were only 0.052 and 3.8 °C, respectively, which was the smallest friction coefficient and lowest temperature rise of all the test subjects. What’s more, the wear of M120D was mainly caused by the cutting effect of the texture edges, the adhesive wear of the non-textured areas, and the secondary wear caused by debris from the internal texture. It was indicated that the bi-composite patterns of spiral-triangle could produce a ‘synergistic effect’ by improving tribological performance and reaching lower friction in low-rotational-speed operation, which could provide a basis for designing a long-lasting and exceptionally reliable mechanical seal.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3