Search-Space Reduction for S-Boxes Resilient to Power Attacks

Author:

Legón-Pérez Carlos MiguelORCID,Sánchez-Muiña RicardoORCID,Miyares-Moreno DianneORCID,Bardaji-López YasserORCID,Martínez-Díaz IsmelORCID,Rojas OmarORCID,Sosa-Gómez GuillermoORCID

Abstract

The search of bijective n×n S-boxes resilient to power attacks in the space of dimension (2n)! is a controversial topic in the cryptology community nowadays. This paper proposes partitioning the space of (2n)! S-boxes into equivalence classes using the hypothetical power leakage according to the Hamming weights model, which ensures a homogeneous theoretical resistance within the class against power attacks. We developed a fast algorithm to generate these S-boxes by class. It was mathematically demonstrated that the theoretical metric confusion coefficient variance takes constant values within each class. A new search strategy—jumping over the class space—is justified to find S-boxes with high confusion coefficient variance in the space partitioned by Hamming weight classes. In addition, a decision criterion is proposed to move quickly between or within classes. The number of classes and the number of S-boxes within each class are calculated, showing that, as n increases, the class space dimension is an ever-smaller fraction of the space of S-boxes, which significantly reduces the space of search of S-boxes resilient to power attacks, when the search is performed from class to class.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. A Salad of Block Ciphers. The State of the Art in Block Ciphers and Their Analysis;Avanzi,2017

2. Springer Encyclopedia of Cryptography and Security;Kryszczuk,2014

3. Linear and Differential Cryptanalysis;Mihailescu,2021

4. A Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms

5. On the Classification of 4 Bit S-Boxes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3