A Fusion Underwater Salient Object Detection Based on Multi-Scale Saliency and Spatial Optimization

Author:

Huang Weiliang1ORCID,Zhu Daqi2ORCID,Chen Mingzhi2

Affiliation:

1. Laboratory of Underwater Vehicles and Intelligent Systems, Shanghai Maritime University, Haigang Avenue 1550, Shanghai 201306, China

2. The School of Mechanical Engineering, University of Shanghai for Science and Technology, Jungong Road 516, Shanghai 200093, China

Abstract

Underwater images contain abundant information, but many challenges remain for underwater object detection tasks. Various salient object detection methods may encounter low detection precision, and the segmented map has an incomplete region of the target object. To deal with blurry underwater scenes and vague detection problems, a novel fusion underwater salient object detection algorithm (FUSOD) is proposed based on multi-scale saliency and spatial optimization. Firstly, an improved underwater color restoration was utilized to restore the color information for afterward color contrast saliency calculation. Secondly, a more accurate multi-scale fusion saliency map was obtained by fully considering both the global and local feature contrast information. Finally, the fusion saliency was optimized by the proposed spatial optimization method to enhance the spatial coherence. The proposed FUSOD algorithm may process turbid and complex underwater scenes and preserve a complete structure of the target object. Experimental results on the USOD dataset show that the proposed FUSOD algorithm can segment the salient object with a comparatively higher detection precision than the other traditional state-of-the-art algorithms. An ablation experiment showed that the proposed spatial optimization method increases the detection precision by 0.0325 scores in the F-Measure.

Funder

National Natural Science Foundation of China

Creative Activity Plan for Science and Technology Commission of Shanghai

Science Foundation of Donhai Laboratory

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3