Research on Practical Path Tracking Control of Autonomous Underwater Vehicle Based on Constructive Dynamic Gain Controller

Author:

Wang Fang12,Peng Yudong3,Guo Longchuan34ORCID

Affiliation:

1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin 150001, China

3. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

4. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In this study, the stochastic nonlinear system-based trajectory tracking control problem of an autonomous underwater vehicle (AUV) is studied. We investigate the time-varying gain adaptive control method to find possible approaches to reduce the excessive computational burden. Enhanced adaptive algorithms are devised by considering the dynamic characteristics of AUV motion. By transforming the original controller design problems into parameter selection problems and subsequently solving them using the functional time-varying observer technical theorem, we can achieve optimal control performance. The control system is shown to constrain system state error due to stochastic disturbances within arbitrarily small domains. A coordinate transformation is proposed for all system states to meet boundedness conditions. We show that the closed-loop stability is confirmed, the system is asymptotically probabilistically stable, and contraction limits given in the stability analysis may be used to certify the convergence of the AUV trajectory errors. A large number of simulation studies using an underwater vehicle model have proved the effectiveness and robustness of the proposed approach. A real-time, time-varying gain constructive control strategy is further developed for the hardware-in-the-loop simulation; the effectiveness of the controller design is confirmed by introducing the controller into the AUV actuator model.

Funder

Stable Supporting Fund of Science and Technology on Underwater Vehicle Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3