Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm

Author:

Chen Long1ORCID,Gao Diju1ORCID,Xue Qimeng1

Affiliation:

1. Key Laboratory of Transport Industry of Marine Technology and Control Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

Reducing energy consumption and carbon emissions from ships is a major concern. The development of hybrid technologies offers a new direction for the rational distribution of energy. Therefore, this paper establishes a torque model for internal combustion engines and motors based on first principles and fitting the data collected from the test platform; in turn, it develops a model for fuel consumption and carbon emissions. Furthermore, the effect of irregular waves using an extended Kalman filter is estimated as well as feedback to the controller as a disturbance variable. Then, a parallel hybrid ship energy management strategy based on a new real-time nonlinear model of predictive control is designed to achieve energy conservation and emission decrease. A hybrid algorithm of chaotic optimization combined with grey wolf optimization is utilized to solve the nonlinear optimization problem in the nonlinear model predictive control strategy and a local refined search is performed using sequential quadratic programming. Through the comparison of fuel consumption, carbon emissions, real-time performance, and the engine load path, the superiority of the nonlinear model predictive control energy management strategy based on the chaotic grey wolf optimization algorithm is verified.

Funder

Shanghai Science and Technology Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3