Investigation of the Energy Absorption Characteristics and Negative Poisson’s Ratio Effect of an Improved Star-Shaped Honeycomb

Author:

Li Qianning12,Cao Xiaofei3,Wu Xingxing4,Chen Wei12ORCID,Li Chunbao12ORCID,Li Xiaobin12

Affiliation:

1. Key Laboratory of High Performance Ship Technology, Ministry of Education, Wuhan University of Technology, Wuhan 430063, China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. School of Science, Wuhan University of Technology, Wuhan 430063, China

4. China Ship Scientific Research Center, Wuxi 214082, China

Abstract

An improved star-shaped honeycomb (ISSH) is a kind of honeycomb structure with excellent performance. The main objective of this study was to provide some ideas for the optimization of the ISSH structure in ships. As a result, 2D-ISSH specimens were fabricated using 3D printing technology, and a quasistatic compression test was carried out to investigate the deformation mode and mechanical properties. The experimental results showed that the 2D-ISSH structure exhibited “V”-shaped and “-”-shaped deformation patterns with a double-platform stress stage. To further utilize the excellent performance of the structure and obtain a better negative Poisson’s ratio effect and broader application, based on the properties of the 2D-ISSH specimen, a 3D-ISSH structure was proposed and a finite element simulation was carried out. The simulation results of the 3D-ISSH structure showed different deformation patterns, including “X”- shaped and “-”-shaped patterns. According to the deformation mechanism of typical cells, the stress formula for the 3D-ISSH double platform was derived, and the theoretical results agreed well with the numerical results. The effects of the structural design, materials, and dimensions on the mechanical properties, such as the energy absorption and negative Poisson’s ratio, of the ISSH and similar structures were explored. The combined performance of various honeycombs was evaluated from multiple perspectives.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3