Quantity and Quality of Light on Growth and Pigment Content of Dunaliella sp. and Anabaena sp. Cultures and the Use of Their Absorption Spectra as a Proxy Method for Assessment

Author:

Hotos George N.1ORCID

Affiliation:

1. Plankton Culture Laboratory, Department of Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece

Abstract

(1) Background: As microalgae cultures are affected by the quantity and quality of light, I explored this for two species. Additionally, I introduced a novel easy and economical way for the growers to easily and economically ascertain continuously with satisfactory accuracy the quantitative and qualitative status of their culture using absorption spectra. (2) Methods: The locally isolated chlorophyte Dunaliella sp. and the cyanobacterium Anabaena sp. were cultured in small volumes with two intensities of white light (2000 and 8000 lux) and with green, blue and red light, and the increase in their biomass and pigments was studied. Pigment analyses, continuous recordings of absorption spectra and calibration curves were used. (3) Results: The intensity of 8000 lux of white light yielded the highest increase in biomass, chlorophylls and carotenoids in Dunaliella sp., and the same was found for green and blue light, while 2000 lux and green light caused the greatest increase in biomass and phycocyanin in Anabaena sp. From the absorption spectra, the evolution of the pigment content can be estimated, and both pigments and biomass are correlated very strongly with those extracted from the spectra absorption of 750 nm. (4) Conclusions: The use of absorption spectra as an easy, fast and economical method can be a useful tool for a good approximation of the state of the microalgae culture. This is clearly shown when the spectra of the cultures under different light intensities and colors are compared having a catalytic effect on the level of the pigments leading to the increase in carotenoids and phycocyanin of the green light.

Funder

ALGAVISION: Isolation and culture of local phytoplankton species aiming to mass production of antibacterial substances, fatty acids, pigments and antioxidants

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3