Proportioning Test on the Similar Materials of the Rock Mass Physical Model Test Considering Seepage and Dynamic Characteristics

Author:

Shi Wanpeng1,Zhang Jianwei1,Xin Chunlei2,Song Danqing3,Hu Nan4,Li Bowei4

Affiliation:

1. School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China

3. State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China

4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

With the development of infrastructure construction, an increasing number of projects are faced with the problem of hydraulic and dynamic coupling. However, traditional physical model materials mainly consider the single factor influence and lack comprehensive research on the hydraulic and dynamic parameters of similar materials. Based on the dimensionless criterion and Buckingham π theorem, the dimension and similarity relation of physical model tests of rock masses under seepage and dynamic coupling are derived. A new type of similar material considering hydraulic and dynamic properties was developed by using quartz sand, barite powder, cement, water glass, rosin, and glycerol as raw materials through a large number of orthogonal tests. Meanwhile, the sensitivity analysis of the physical and mechanical properties of similar materials was carried out and the influence of each component factor on the physical properties was revealed. A material preparation scheme was developed to meet the physical and hydraulic characteristics of different rock and soil physical models. An empirical matching formula considering each parameter is proposed. This work can provide an important reference for physical model tests of similar rock masses.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talent of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3