A Safety Assessment Model for Handling Dangerous Goods in Port Operations: The Key Role of Detection Capability

Author:

Tseng Po-Hsing1,Pilcher Nick2ORCID

Affiliation:

1. Department of Shipping and Transportation Management, National Taiwan Ocean University, Keelung City 202301, Taiwan

2. The Business School, Edinburgh Napier University, Edinburgh EH14 1DJ, UK

Abstract

Recently, resilience studies have been emphasized in the port field, recognizing that many high-risk and unsafe factors in ports might bring serious disasters and economic losses. One major cause of significant losses is accidents from fires, explosions, and the resultant adverse impacts from dangerous goods. Whilst the occurrence of major events related to dangerous goods is relatively low in occurrence, their impact on the environment and economic and social loss, and on human casualties, can be extremely high when they do occur. In order to prevent potential risks and reduce losses, based on a literature review, a safety assessment model was developed with four criteria and 15 sub-criteria of dangerous goods in ports using a fuzzy analytic hierarchy process (FAHP) approach. This model formed the basis for a subsequent stage involving questionnaires with 25 experts. The results of these questionnaires found that the key criteria are detection capability, followed by recovery capability, rescue capability, and resistance capability. Sensitivity analysis is used to identify the criteria’s weight value changes under various scenarios. These findings concern dangerous goods operations management in ports. Critically, these findings emphasize the key role played in the initial stages of determining precisely and exactly what specific goods are in fact dangerous goods, thereby avoiding a domino effect of adverse consequences later. Suggestions are made for policymakers regarding funding and supporting processes for handling dangerous goods, as well as for future research.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3