Dramatically Enhanced Mechanical Properties of Nano-TiN-Dispersed n-Type Bismuth Telluride by Multi-Effect Modulation

Author:

Lin Shengao1,Li Jing1,Yan Heng1,Meng Xianfu1,Xiang Qingpei1,Jing Hang1,Chen Xiaoxi1,Yang Chuting1

Affiliation:

1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Abstract

Bismuth telluride (Bi2Te3)-based alloys have been extensively employed in energy harvesting and refrigeration applications for decades. However, commercially produced Bi2Te3-based alloys using the zone-melting (ZM) technique often encounter challenges such as insufficient mechanical properties and susceptibility to cracking, particularly in n-type Bi2Te3-based alloys, which severely limit the application scenarios for bismuth telluride devices. In this work, we seek to enhance the mechanical properties of n-type Bi2Te2.7Se0.3 alloys while preserving their thermoelectrical performance by a mixed mechanism of grain refinement and the TiN composite phase-introduced pinning effect. These nanoscale processes, coupled with the addition of TiN, result in a reduction in grain size. The pinning effects of nano-TiN contribute to increased resistance to crack propagation. Finally, the TiN-dispersed Bi2Te2.7Se0.3 samples demonstrate increased hardness, bending strength and compressive strength, reaching 0.98 GPa, 36.3 MPa and 74 MPa. When compared to the ZM ingots, those represent increments of 181%, 60% and 67%, respectively. Moreover, the thermoelectric performance of the TiN-dispersed Bi2Te2.7Se0.3 samples is identical to the ZM ingots. The samples exhibit a peak dimensionless figure of merit (ZT) value of 0.957 at 375 K, with an average ZT value of 0.89 within the 325–450 K temperature range. This work has significantly enhanced mechanical properties, increasing the adaptability and reliability of bismuth telluride devices for various applications, and the multi-effect modulation of mechanical properties demonstrated in this study can be applied to other thermoelectric material systems.

Funder

National Key Research and Development Program of China

Defense Industrial Technology Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3