Physicochemical Changes in Root-Canal Sealers under Thermal Challenge: A Comparative Analysis of Calcium Silicate- and Epoxy-Resin-Based Sealers

Author:

Kim Hye-In1,Jang Young-Eun1,Kim Yemi1ORCID,Kim Bom Sahn2ORCID

Affiliation:

1. Department of Conservative Dentistry, College of Medicine, Ewha Womans University, Seoul 07986, Republic of Korea

2. Department of Nuclear Medicine, College of Medicine, Ewha Womans University, Seoul 07986, Republic of Korea

Abstract

Introduction: We compared the effects of heat on the physicochemical properties of recently developed calcium silicate-based sealers (CSBSs), including BioRoot Flow, BioRoot RCS, and AH Plus Bioceramic sealer, with those of the epoxy-resin-based sealer (ERBS) AH Plus. Methods: The flow, film thickness, setting time, and solubility of sealers were evaluated at 37 °C and 100 °C using ISO 6876/2012. Furthermore, pH and calcium ion release were evaluated at these temperatures. In addition, the mass change in sealers at a high temperature was assessed via thermogravimetric analysis. Then, the chemical composition and components of the sealers were analyzed using a scanning electron microscope and Fourier-transform infrared spectroscopy (FTIR). Results: BioRoot Flow, AH Plus Bioceramic, and AH Plus complied with ISO standards in terms of flow and film thickness, both before and after heat application. However, BioRoot RCS exhibited significantly increased film thickness at 100 °C. The setting times of all sealers were significantly reduced at 100 °C. The solubility of CSBS was >3%, exceeding the ISO 6876/2012 standard, both before and after heat exposure. Conversely, the solubility of AH Plus complied with the standard, regardless of the thermal condition. For 4 weeks, CSBS showed a significantly higher pH than AH Plus at both 37 °C and 100 °C. After heat treatment, calcium release decreased in Bioroot RCS and BioRoot Flow, while AH Plus showed no significant differences before and after treatment. However, CSBS consistently exhibited significantly higher calcium release than AH Plus at both temperatures. An FTIR analysis revealed that the chemical composition of the sealers did not change at the high temperature, whereas a thermogravimetric analysis demonstrated a >5% weight reduction in CSBS and a 0.005% weight reduction in AH Plus at 100 °C. Conclusions: BioRoot Flow, AH Plus Bioceramic, and AH Plus possess favorable physicochemical properties, which make them suitable for application under thermal conditions. At a high temperature, BioRoot RCS did not exhibit changes in its chemical composition. However, its film thickness was increased, and pH and solubility were reduced. Therefore, caution is needed when it is applied at high temperatures, such as during the warm obturation technique.

Funder

National Research Foundation of the Republic of Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3