Porous Silicone Rubber Composite Supported 1,4-Diphenylethynyl Benzene for Hydrogen Absorption with Pd/C Catalyst

Author:

Wang Yu1,Xing Tao2,Yan Lifeng1ORCID

Affiliation:

1. Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

2. Institute of System and Engineering, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang 621900, China

Abstract

Hydrogen is a dangerous gas as it reacts very easily with oxygen and may explode; therefore, the accumulation of hydrogen in confined spaces is a safety hazard. Composites consisting of unsaturated polymers and catalysts are a common getter, where the commonly used polymer is 1,4- diphenylethynyl benzene (DEB). Silicone rubber (SR) is a good carrier for hydrogen-absorbing materials due to its excellent chemical stability and gas permeability. In this work, polysiloxane, water, and a emulsifier are ultrasonically injected into a uniform emulsion, and the hydrogen getter DEB-Pd/C (Palladium on carbon) is then added. Under the catalysis of platinum (Pt), the cross-linking agent undergoes a hydrosilylation reaction to cross-link polysiloxane in emulsion to form silicone rubber. Then, the water was removed by freeze-drying, and the loss of water constructed a porous frame structure for silicone rubber, thus obtaining porous silicone rubber. The difference in hydrogen absorption performance between porous silicone rubber and ordinary silicone rubber was compared. It was found that, with the increase in water in the emulsion, the porous frame of silicone rubber was gradually improved, and the hydrogen absorption performance was improved by 243.4% at the highest, almost reaching the theoretical saturated hydrogen absorption capacity. Porous silicone rubber was prepared by emulsion mixing, which provided a new idea for further improving the hydrogen absorption performance of silicone rubber.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3