Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling

Author:

Torres-Dias Abraao Cefas,Impellizzeri AnthonyORCID,Picheau EmmanuelORCID,Noé Laure,Pénicaud AlainORCID,Ewels ChristopherORCID,Monthioux MarcORCID

Abstract

We report the intercalation of iodine chains in highly crystalline arc-discharge multiwalled carbon nanotubes (MWCNTs), not in the central cavity but instead between the concentric graphene shells. High-resolution transmission electron microscopy demonstrated that the intercalation was asymmetric with respect to the longitudinal axis of the nanotubes. This filling is explained through the existence of asymmetric intershell channels which formed as the tubes shrank upon cooling after growth. Shrinkage occurred because the geometrically constrained equilibrium intershell spacing was higher at growth than room temperature, due to the highly anisotropic coefficient of thermal expansion of graphite (or graphene stacks). Computational modelling supported the formation of such cavities and explained why they all formed on the same side of the tubes. The graphene shells were forced to bend outward, thereby opening aligned intergraphene nanocavities, and subsequently allowing the intercalation with iodine once the tube ends were opened by oxidative treatment. These observations are specific to catalyst-free processes because catalytic processes use too low temperatures, but they are generally applicable in geometrically closed carbon structures grown at high temperatures and so should be present in all arc-grown MWCNTs. They are likely to explain multiple observations in the literature of asymmetric interlayer spacings in multiple-shell graphenic carbon structures.

Funder

OPIFCat project

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3