Abstract
A liquid droplet can hover over a solid surface that is heated above the Leidenfrost point (LFP), at which an insulating vapor layer is formed that acts as a heat transfer barrier. Recent studies have reported that hierarchical micro- and nanoscale textures provide high wettability and significant LFP enhancement. However, such textures are often difficult and expensive to fabricate. Therefore, this study aimed to experimentally demonstrate LFP enhancement through the use of low-cost hierarchical textures. Surface textures were fabricated by coating SiO2 nanoparticles on stainless steel wire meshes. The droplet lifetime method was used to determine the LFP in a temperature range of 200 °C–490 °C. High-speed imaging (4000–23,000 fps) was performed for visualizing the impact behavior of a droplet. The LFP value of the nanocoated mesh surface was found to be greater than 490 °C. This enhanced LFP was 178 °C higher than that of a stainless steel surface and 38 °C higher than that of a single-layer textured surface. Furthermore, with respect to the LFP enhancement, the explosive impact behavior of a droplet can be observed on nanocoated mesh surfaces.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献