Towards Efficient Risky Driving Detection: A Benchmark and a Semi-Supervised Model

Author:

Cheng Qimin1,Li Huanying1ORCID,Yang Yunfei2,Ling Jiajun1ORCID,Huang Xiao3

Affiliation:

1. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3. Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA

Abstract

Risky driving is a major factor in traffic incidents, necessitating constant monitoring and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack of suitable data for detecting risky driving in traffic surveillance settings remains a significant challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection, is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras. Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the resilience and generalizability of algorithms for detecting risky driving. Further, to address the scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised method founded on a teacher–student model is introduced, aiming at bypassing the time-consuming and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN) to amplify spatial perception capabilities and amalgamate features at varying scales and levels, thus boosting detection precision. Extensive experiments on widely utilized datasets, including the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the proposed DGMB-Net.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3