A Review on the Usage of Continuous Carbon Fibers for Piezoresistive Self Strain Sensing Fiber Reinforced Plastics

Author:

Scholle PatrickORCID,Sinapius MichaelORCID

Abstract

This literature review examines the application of carbon fibers and their reinforced plastics for Self-Strain-Sensing structures and gives an up-to-date overview of the existing research. First, relevant basic experimental approaches that can be found in the literature are presented and discussed. Next, we propose to cluster the available articles into 5 categories based on specimen size and ranging from experiments on bare carbon fiber via impregnated fiber rovings to carbon fiber laminates. Each category is analyzed individually and the potential differences between them are discussed based on experimental evidence found in the past. The overview shows, that the choice of carbon fiber and the specific experimental setup both significantly influence the piezoresistive properties measured in Self-Strain-Sensing carbon fiber reinforced plastics. Conclusively, based on the conclusions drawn from the literature review, we propose a small number of measurements that have proven to be important for the analysis of Self-Strain-Sensing carbon fiber structures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of indentation damage in carbon fiber/epoxy composites via EIT during the application of bending loads;NDT & E International;2024-10

2. Low-cost sensor-based damage localization for large-area monitoring of FRP composites;Smart Materials and Structures;2024-05-31

3. Damage localization in large-area FRP composites using a parallel array of self-sensing carbon fiber tows;Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVIII;2024-05-09

4. Room temperature 3D carbon microprinting;Nature Communications;2024-03-29

5. Multifunctional Fiber-Reinforced Polymer Composites for Damage Detection and Memory;Journal of Composites Science;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3