An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization

Author:

Vishnu Mini,T. K. Sunil Kumar

Abstract

Well-structured reactive power policies and dispatch are major concerns of operation and control technicians of any power system. Obtaining a suitable reactive power dispatch for any given load condition of the system is a prime duty of the system operator. It reduces loss of active power occurring during transmission by regulating reactive power control variables, thus boosting the voltage profile, enhancing the system security and power transfer capability, thereby attaining an improvement in overall system operation. The reactive power dispatch (RPD) problem being a mixed-integer discrete continuous (MIDC) problem demands the solution to contain all these variable types. This paper proposes a methodology to achieve an optimal and practically feasible solution to the RPD problem through the diversity-enhanced particle swarm optimization (DEPSO) technique. The suggested method is characterized by the calculation of the diversity of each particle from its mean position after every iteration. The movement of the particles is decided based on the calculated diversity, thereby preventing both local optima stagnation and haphazard unguided wandering. DEPSO accounts for the accuracy of the variables used in the RPD problem by providing discrete values and integer values compared to other algorithms, which provide all continuous values. The competency of the proposed method is tested on IEEE 14-, 30-, and 118-bus test systems. Simulation outcomes show that the proposed approach is feasible and efficient in attaining minimum active power losses and minimum voltage deviation from the reference. The results are compared to conventional particle swarm optimization (PSO) and JAYA algorithms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Optimal Power Flow Solutions

2. Optimal Reactive Power Allocation for Improved System Performance

3. Non-Linear Var Optimization Using Decomposition And Coordination

4. Optimal reactive dispatch through interior point methods

5. An interior point nonlinear programming for optimal power flow problems with a new data structure;Wei;IEEE Trans. Power Syst.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3