Volume and Surface Resistivity Measurement of Insulating Materials Using Guard-Ring Terminal Electrodes

Author:

Lee Heon-GyeongORCID,Kim Jin-GyuORCID

Abstract

Recently, eco-friendly energy conversion policies have been being promoted through de-nuclearization and de-coal. For this purpose, a super grid should be built to optimize sustainable renewable energy resources such as solar and wind power. Accordingly, considering the various problems such as technology and cost, a system for efficient energy transmission is required. Hence, research is being actively conducted to apply it, owing to the development of the high voltage direct current (HVDC) system. Among HVDC systems, the cable system is extremely important, in addition to the measurement of the dielectric breakdown strength, space charge, and volume resistivity of insulating materials. The existing resistivity measurement method measures both the volume and surface resistivity using a three-terminal electrode that is used in the international standards of American Society for Testing and Materials (ASTM) D 257 and International Electrotechnical Commission (IEC) 60093. However, the circuit configuration differs depending on the measurement of the volume and surface resistivity; moreover, when a DC voltage is applied to the insulator, a charging current flows and there are multiple samples to be measured, which takes a considerable amount of time. Therefore, in this study, we proposed a new type of resistivity measurement system that is based on the existing three-terminal electrode system. Furthermore, we produced a system capable of simultaneously measuring the volume and surface resistivity. Finally, using this system, we compared and analyzed the volume and surface resistivity of five insulating materials.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3