The Influence of Fe on the Structure and Hydrogen Sorption Properties of Ti-V-Based Metal Hydrides

Author:

Nygård Magnus M.ORCID,Sørby Magnus H.ORCID,Grimenes Arne A.,Hauback Bjørn C.ORCID

Abstract

Ti-V-based metal hydrides have decent overall performance as hydrogen storage materials, but V is expensive and it is therefore tempting to replace it by less expensive ferrovanadium containing about 20% Fe. In the present work we have investigated how Fe influences the structure and hydrogen storage properties of (Ti0.7V0.3)1−zFez alloys with e r r o r t y p e c e z ∈ { 0 , 0.03, 0.06, 0.1, 0.2, 0.3} using synchrotron radiation powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and manometric measurements performed in a Sieverts apparatus. The alloys form body-centered cubic (bcc) crystal structures for all considered values of z, and the addition of Fe causes the unit cell to contract. When exposed to hydrogen gas, the bcc alloys form face-centered cubic (fcc) hydrides if e r r o r t y p e c e z ≤ 0 . 1 while other hydrogen-containing phases are formed for higher Fe-contents. The hydrogen capacities of the fcc hydrides at 20 bar are not significantly influenced by the addition of Fe and reach 3.2(3) wt% in (Ti0.7V0.3)0.9Fe0.1H1.6(2). For higher Fe contents the hydrogen capacity is decreased. The absorption kinetics are fast and the reactions are complete within minutes when the alloys are exposed to 20 bar H2 at room temperature. Increasing Fe content reduces the desorption enthalpy, onset temperature and activation energy.

Funder

NordForsk

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3