Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland

Author:

Gładysz PawełORCID,Sowiżdżał AnnaORCID,Miecznik MaciejORCID,Hacaga Maciej,Pająk LeszekORCID

Abstract

The objective of this study is to assess the techno-economic potential of the proposed novel energy system, which allows for negative emissions of carbon dioxide (CO2). The analyzed system comprises four main subsystems: a biomass-fired combined heat and power plant integrated with a CO2 capture and compression unit, a CO2 transport pipeline, a CO2-enhanced geothermal system, and a supercritical CO2 Brayton power cycle. For the purpose of the comprehensive techno-economic assessment, the results for the reference biomass-fired combined heat and power plant without CO2 capture are also presented. Based on the proposed framework for energy and economic assessment, the energy efficiencies, the specific primary energy consumption of CO2 avoidance, the cost of CO2 avoidance, and negative CO2 emissions are evaluated based on the results of process simulations. In addition, an overview of the relevant elements of the whole system is provided, taking into account technological progress and technology readiness levels. The specific primary energy consumption per unit of CO2 avoided in the analyzed system is equal to 2.17 MJLHV/kg CO2 for biomass only (and 6.22 MJLHV/kg CO2 when geothermal energy is included) and 3.41 MJLHV/kg CO2 excluding the CO2 utilization in the enhanced geothermal system. Regarding the economic performance of the analyzed system, the levelized cost of electricity and heat are almost two times higher than those of the reference system (239.0 to 127.5 EUR/MWh and 9.4 to 5.0 EUR/GJ), which leads to negative values of the Net Present Value in all analyzed scenarios. The CO2 avoided cost and CO2 negative cost in the business as usual economic scenario are equal to 63.0 and 48.2 EUR/t CO2, respectively, and drop to 27.3 and 20 EUR/t CO2 in the technological development scenario. The analysis proves the economic feasibility of the proposed CO2 utilization and storage option in the enhanced geothermal system integrated with the sCO2 cycle when the cost of CO2 transport and storage is above 10 EUR/t CO2 (at a transport distance of 50 km). The technology readiness level of the proposed technology was assessed as TRL4 (technological development), mainly due to the early stage of the CO2-enhanced geothermal systems development.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference94 articles.

1. The Global Status of CCS: 2019. Australia, 2019https://www.globalccsinstitute.com/resources/global-status-report/

2. The Carbon Capture and Storage Readiness Index 2018: Is the World Ready for Carbon Capture and Storage;Havercroft,2018

3. Global Carbon Atlashttp://www.globalcarbonatlas.org/en/content/welcome-carbon-atlas

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3