Blockchain and Machine Learning for Future Smart Grids: A Review

Author:

Mololoth Vidya KrishnanORCID,Saguna SagunaORCID,Åhlund ChristerORCID

Abstract

Developments such as the increasing electrical energy demand, growth of renewable energy sources, cyber–physical security threats, increased penetration of electric vehicles (EVs), and unpredictable behavior of prosumers and EV users pose a range of challenges to the electric power system. To address these challenges, a decentralized system using blockchain technology and machine learning techniques for secure communication, distributed energy management and decentralized energy trading between prosumers is required. Blockchain enables secure distributed trust platforms, addresses optimization and reliability challenges, and allows P2P distributed energy exchange as well as flexibility services between customers. On the other hand, machine learning techniques enable intelligent smart grid operations by using prediction models and big data analysis. Motivated from these facts, in this review, we examine the potential of combining blockchain technology and machine learning techniques in the development of smart grid and investigate the benefits achieved by using both techniques for the future smart grid scenario. Further, we discuss research challenges and future research directions of applying blockchain and machine learning techniques for smart grids both individually as well as combining them together. The identified areas that require significant research are demand management in power grids, improving the security of grids with better consensus mechanisms, electric vehicle charging systems, scheduling of the entire grid system, designing secure microgrids, and the interconnection of different blockchain networks.

Funder

Stiftelsen Rönnbäret

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3