Abstract
Developments such as the increasing electrical energy demand, growth of renewable energy sources, cyber–physical security threats, increased penetration of electric vehicles (EVs), and unpredictable behavior of prosumers and EV users pose a range of challenges to the electric power system. To address these challenges, a decentralized system using blockchain technology and machine learning techniques for secure communication, distributed energy management and decentralized energy trading between prosumers is required. Blockchain enables secure distributed trust platforms, addresses optimization and reliability challenges, and allows P2P distributed energy exchange as well as flexibility services between customers. On the other hand, machine learning techniques enable intelligent smart grid operations by using prediction models and big data analysis. Motivated from these facts, in this review, we examine the potential of combining blockchain technology and machine learning techniques in the development of smart grid and investigate the benefits achieved by using both techniques for the future smart grid scenario. Further, we discuss research challenges and future research directions of applying blockchain and machine learning techniques for smart grids both individually as well as combining them together. The identified areas that require significant research are demand management in power grids, improving the security of grids with better consensus mechanisms, electric vehicle charging systems, scheduling of the entire grid system, designing secure microgrids, and the interconnection of different blockchain networks.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference123 articles.
1. US Department of Energy (2021, July 20). The Smart Grid, Available online: https://www.smartgrid.gov/the_smart_grid/smart_grid.html.
2. Smart grid—The new and improved power grid: A survey;Fang;IEEE Commun. Surv. Tutor.,2012
3. Demand response and smart grids: A survey;Siano;Renew. Sustain. Energy Rev.,2014
4. Falvo, M.C., Graditi, G., and Siano, P. (2014, January 18–20). Electric vehicles integration in demand response programs. Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy.
5. Bollen, M. (2011). The Smart Grid: Adapting the Power System to New Challenges, Morgan & Claypool Publishers.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献