An Experimental Approach for Secondary Consensus Control Tuning for Inverter-Based Islanded Microgrids

Author:

de Doile Gabriel Nasser DoyleORCID,Balestrassi Pedro PauloORCID,Castilla MiguelORCID,Zambroni de Souza Antonio CarlosORCID,Miret JaumeORCID

Abstract

A microgrid is a group of interconnected loads and distributed energy resources that can fill the gap between the dependence on a bulk power grid and the transition to renewable energies. The islanded mode presents itself as the most interesting scenario, when local controllers should maintain the power quality standards based on several parameters. A tool specifically focused on the process of parameter tuning of the secondary consensus-based control for inverter-based islanded microgrids was proposed in this paper. One often-quoted drawback in this process is the great number of parameters that must be tuned, even for a very simple microgrid structure. To manage such a large number of parameters, the design of experiments was used in this study. The main motivation for this work was to present an optimized way to define the correct parameters for the secondary consensus control for inverter-based islanded microgrids. The study shows how experimental design methodology can be an efficient tool to tune microgrid parameters, which are typically multi-objective-based experiments. From the results, it is correct to state that the design of experiments is able to reach the optimal setting with a minimal number of experiments, which would be almost impossible to obtain with the trial-and-error method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference24 articles.

1. U.S. Department of Energy (DOE) (2022, December 13). Combined Heat and Power Technology, Available online: https://www.energy.gov.

2. Making Microgrids Work;Kroposki;IEEE Power Energy Mag.,2008

3. Voltage Unbalance Reduction in the Domestic Distribution Area Using Asymmetric Inverters;Neukirchner;J. Clean. Prod.,2017

4. A Brief Review on Microgrids: Operation, Applications, Modeling, and Control;Shahgholian;Int. Trans. Electr. Energy Syst.,2021

5. A Review of Droop Control Techniques for Microgrid;Tayab;Renew. Sustain. Energy Rev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3