Dynamic Simulation of Partial Load Operation of an Organic Rankine Cycle with Two Parallel Expanders

Author:

Ekwonu Michael ChukwuemekaORCID,Kim Mirae,Chen Binqi,Tauseef Nasir Muhammad,Kim Kyung ChunORCID

Abstract

The parallel expander ORC system is one of the solutions for providing an additional power output by improving the partial-load performance of an ORC. The parallel expander system corresponds to partial-load conditions by switching between various combinations of the expanders. During this process, the dynamic behavior occurs, which have not been characterized well in the open literature according to the best of the authors’ knowledge. In this study, we developed a dynamic modeling of an ORC system using dual expanders (DE-ORC) to study the dynamic responses during its mode changes. System components were simulated using an open-source library of ThermoCycle written in Modelica language. For each component, empirical parameters were implemented based on the experimental results. Furthermore, during the mode change that involved going from dual expander mode to singular expander mode, and to prevent the formation of the droplet in the expanders, a control strategy was proposed and simulated. The strategy involved lowering of the mass flow rate and then shifting the mode. Several timings between flow rate lowering and shifting the mode were analyzed, and the optimum shifting time was found to be in between 40 to 50 s.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3