Deep Learning Approaches for Numerical Modeling and Historical Reconstruction of Water Quality Parameters in Lower Seine

Author:

Janbain Imad1ORCID,Jardani Abderrahim1,Deloffre Julien1ORCID,Massei Nicolas1

Affiliation:

1. M2C UMR 6143, CNRS, UNICAEN, University Rouen Normandie, F-76000 Rouen, France

Abstract

Water quality monitoring is essential for managing water resources and ensuring human and environmental health. However, obtaining reliable data can be challenging and costly, especially in complex systems such as estuaries. To address this problem, we propose a novel deep learning-based approach that uses limited available data to accurately estimate and reconstruct critical water quality variables, such as electrical conductivity, dissolved oxygen, and turbidity. Our approach included two tasks, numerical modeling and historical reconstruction, and was applied to the Seine River in the Normandy region of France at four quality stations. In the first task, we evaluated four deep learning approaches (GRU, BiLSTM, BiLSTM-Attention, and CNN-BiLSTM-Attention) to numerically simulate each variable for each station under different input data selection scenarios. We found that incorporating the quality data with the water level data collected at the various stations into the input data improved the accuracy of the water quality data simulation. Combining water levels from multiple stations reliably reproduced electrical conductivity, especially at stations near the sea where tidal fluctuations control saltwater intrusion in the area. While each model had its strengths, the CNN-BiLSTM-Attention model performed best in complex tasks with dissimilar input trends, and the GRU model outperformed other models in simple monitoring tasks with similar input-target trends. The second task involved automatically searching the optimal configurations for completing the missing historical data in sequential order using the modeling task results. The electrical conductivity data were filled before the dissolved oxygen data, which were in turn more reliable than the turbidity simulation. The deep learning models accurately reconstructed 15 years of water quality data using only six and a half years of modeling data. Overall, this research demonstrates the potential of deep learning approaches with their limitations and discusses the best configurations to improve water quality monitoring and reconstruction.

Funder

Normandie Region

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference53 articles.

1. Haslam, S.M. (1991). River Pollution: An Ecological Perspective, John Wiley & Son Ltd.

2. Institutional Developments, Standards and River Quality: A UK History and Some Lessons for Industrialising Countries;Johnstone;Water Sci. Technol.,1996

3. Network Design for Water Quality Monitoring of Surface Freshwaters: A Review;Strobl;J. Environ. Manag.,2008

4. Water Quality Monitoring Strategies—A Review and Future Perspectives;Behmel;Sci. Total Environ.,2016

5. A Review on Integration of Artificial Intelligence into Water Quality Modelling;Chau;Mar. Pollut. Bull.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3