Author:
Yu Dan,Morisada Shintaro,Kawakita Hidetaka,Ohto Keisuke,Inoue Katsutoshi,Song Ximing,Zhang Guolin
Abstract
To remove the radioactive cesium from the polluted environment, tea leaves were chosen as cheap, and abundantly available environment-friendly bio-adsorbents to investigate the alkali metals adsorption. Fresh and used tea leaves (FT and UT) were found to have high efficiency and selectivity for cesium adsorption, after the crosslinking with concentrated sulfuric acid. Calculation of the proton-exchanged amount suggested adsorption mechanism of three alkali metals on crosslinked tea leaves involve a cationic exchange with a proton from the hydroxyl groups of the crosslinked tea leaves, as well as coordination with ethereal oxygen atoms to form the chelation. Further, considering the practical application of the polluted water treatment, the competitive adsorption of Cs+ and Na+ ions was investigated by the batch-wise method and column chromatography separation. Unlike the conventional ion exchange and chelate resins with less selectivity for Cs+ coexisting cations, both crosslinked fresh tea leaves (CFT) and crosslinked used tea leaves (CUT) exhibited Cs selectivity over Na. In addition, batch adsorption studies revealed that the cesium adsorptions were driven by the Langmuir isotherm model; the capacity of both crosslinked tea leaves for cesium adsorption was determined to be around 2.5 mmol g−1. The adsorption capacities are sufficiently higher in comparison with those of synthetic polymers, inorganic ion-exchangers, and other bio-adsorbents.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities;Science of The Total Environment;2024-11
2. Decontaminating liquid-containing Cs-137 by natural Pumice stone;Journal of Environmental Radioactivity;2024-02
3. Theories and applications of tea residue adsorbing aroma compounds: a review;Beverage Plant Research;2024
4. Amino modified nanofibers anchored to Prussian blue nanoparticles selectively remove Cs+ from water;Journal of Environmental Sciences;2023-05
5. The Toxicological Analysis and Toxicological Risk Assessment of Chosen Elemental Impurities (Ag, Au, Co, Cr, Cs, Li, Mo, Se, and Sr) in Green Tea (Camellia sinensis (L.)) Infusions;Nutrients;2023-03-17