Development of the Wetland Condition Index (WCI) by Combining the Landscape Development Intensity Index (LDI) and the Water Environment Index (WEI) for Humid Regions of China

Author:

Wang GangORCID,Li Yufeng,Liu Hongyu,Wright Alan

Abstract

Human use and management have a marked effect on wetland from different scales; it is necessary to develop a multi-scale integrated method to assess wetland conditions. So, this research aids the development of the wetland condition index (WCI) for humid regions of China by combining two main sub-indices: (i) the landscape development intensity index (LDI), which assesses human-dominated impacts; and (ii) the water environment index (WEI), which assesses changes in water quality and phytoplankton. We measured terrain and land use in the watersheds of wetlands using remote imaging data with geographic information systems (GIS) software. Also, we monitored the physical and chemical variables of the water bodies of 27 wetlands in urbanized and moderately urbanized areas in Nanjing City of China for this study. There were significant inconsistencies between the city’s level of development and the values of the WCI and its sub-indices. The WCI of urbanized areas was better than that for moderately urbanized areas, and the sub-indices LDI and WEI were only slightly correlated. In other words, wetlands with a low LDI value did not necessarily have a low water environment index value. Due to wetland restoration and human management activities, integrating the LDI and WEI is increasingly necessary for wetlands in urbanized areas than for moderately urbanized areas. This method could guide the design of wetlands to optimize their qualities and benefits to residents and reinforce wetland conservation.

Funder

National Natural Science Foundation of China

Key University Science Research Project of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3