Comparative Study of Four TiO2-Based Photocatalysts to Degrade 2,4-D in a Semi-Passive System

Author:

Heydari Gisoo,Hollman Jordan,Achari Gopal,Langford Cooper

Abstract

In this study, the relative efficiency of four forms of supported titanium dioxide (TiO2) as a photocatalyst to degrade 2,4-dichlorophenoxyacetic acid (2,4-D) in Killex®, a commercially available herbicide was studied. Coated glass spheres, anodized plate, anodized mesh, and electro-photocatalysis using the anodized mesh were evaluated under an ultraviolet – light-emitting diode (UV-LED) light source at λ = 365 nm in a semi-passive mode. Energy consumption of the system was used to compare the efficiency of the photocatalysts. The results showed both photospheres and mesh consumed approximately 80 J/cm3 energy followed by electro-photocatalysis (112.2 J/cm3), and the anodized plate (114.5 J/cm3). Although electro-photocatalysis showed the fastest degradation rate (K = 5.04 mg L−1 h−1), its energy consumption was at the same level as the anodized plate with a lower degradation rate constant of 3.07 mg L−1 h−1. The results demonstrated that three-dimensional nanotubes of TiO2 surrounding the mesh provide superior degradation compared to one-dimensional arrays on the planar surface of the anodized plate. With limited broad-scale comparative studies between varieties of different TiO2 supports, this study provides a comparative analysis of relative degradation efficiencies between the four photocatalytic configurations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3