The Impacts of the Geographic Distribution of Manufacturing Plants on Groundwater Withdrawal in China

Author:

Zheng YantingORCID,Yang Huidan,Huang JinyuanORCID,Wang Linjuan,Lv Aifeng

Abstract

The overexploitation of groundwater in China has raised concern, as it has caused a series of environmental and ecological problems. However, far too little attention has been paid to the relationship between groundwater use and the spatial distribution of water users, especially that of manufacturing factories. In this study, a factory scatter index (FSI) was constructed to represent the spatial dispersion degree of manufacturing factories in China. It was found that counties and border areas between neighboring provinces registered the highest FSI increases. Further non-spatial and spatial regression models using 205 provincial-level secondary river basins in China from 2016 showed that the scattered distribution of manufacturing plants played a key role in groundwater withdrawal in China, especially in areas with a fragile ecological environment. The scattered distribution of manufacturing plants raises the cost of tap water transmission, makes monitoring and supervision more difficult, and increases the possibility of surface water pollution, thereby intensifying groundwater withdrawal. A reasonable spatial adjustment of manufacturing industry through planning and management can reduce groundwater withdrawal and realize the protection of groundwater. Our study may provide a basis for water-demand management through spatial adjustment in areas with high water scarcity and a fragile ecological environment.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference38 articles.

1. Environmental flow limits to global groundwater pumping

2. Policing the urban pumping race: Industrial groundwater overexploitation in Indonesia

3. Facing the Challenges: Case Studies and Indicators: UNESCO’s Contributions to the United Nations World Water Development Report;Koncagül,2015

4. Food Security, Water Security, Improved Food Value Chains for a more Sustainable Socio-economic Development;Klingbeil,2013

5. The Global Groundwater Situation: Overview of Opportunities and Challenges;Shah,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3