Abstract
Crown ratio (CR) and height to crown base (HCB) are important crown characteristics influencing the behavior of forest canopy fires. However, the labor-intensive and costly measurement of CR and HCB have hindered their wide application to forest fire management. Here, we use 301 sample trees collected in 11 provinces in China to produce predictive models of CR and HCB for Masson pine forests (Pinus massoniana Lamb.), which are vulnerable to forest canopy fires. We first identified the best basic model that used only diameter at breast height (DBH) and height (H) as independent variables to predict CR and HCB, respectively, from 11 of the most used potential candidate models. Second, we introduced other covariates into the best basic model of CR and HCB and developed the final CR and HCB predictive models after evaluating the model performance of different combinations of covariates. The results showed that the Richards form of the candidate models performed best in predicting CR and HCB. The final CR model included DBH, H, DBH0.5 and height-to-diameter ratio (HDR), while the final HCB model was the best basic model (i.e., it did not contain any other covariates). We hope that our CR and HCB predictive models contribute to the forest crown fire management of Masson pine forests.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献