Margin-Based Deep Learning Networks for Human Activity Recognition

Author:

Lv TianqiORCID,Wang Xiaojuan,Jin Lei,Xiao Yabo,Song Mei

Abstract

Human activity recognition (HAR) is a popular and challenging research topic, driven by a variety of applications. More recently, with significant progress in the development of deep learning networks for classification tasks, many researchers have made use of such models to recognise human activities in a sensor-based manner, which have achieved good performance. However, sensor-based HAR still faces challenges; in particular, recognising similar activities that only have a different sequentiality and similarly classifying activities with large inter-personal variability. This means that some human activities have large intra-class scatter and small inter-class separation. To deal with this problem, we introduce a margin mechanism to enhance the discriminative power of deep learning networks. We modified four kinds of common neural networks with our margin mechanism to test the effectiveness of our proposed method. The experimental results demonstrate that the margin-based models outperform the unmodified models on the OPPORTUNITY, UniMiB-SHAR, and PAMAP2 datasets. We also extend our research to the problem of open-set human activity recognition and evaluate the proposed method’s performance in recognising new human activities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Design of Long Short Term Memory Networks and Ensembles through Genetic Algorithms;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Video Activity Classification : A Comparative Analysis and Deep Learning Based Implementation;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. Optimizing HAR Systems: Comparative Analysis of Enhanced SVM and k-NN Classifiers;International Journal of Computational Intelligence Systems;2024-06-17

4. Sensor-Based Human Activity Recognition Using a Hybrid CNN-SVM Approach;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

5. Human Activity Recognition Using Convolutional Autoencoder and Advanced Preprocessing;International Journal of Online and Biomedical Engineering (iJOE);2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3