Spatiotemporal Rule of Heat Transfer on a Soil/Finned Tube Interface

Author:

Huang Yongsheng,Li Wenbin,Xu Daochun,Wu Yafeng

Abstract

To efficiently harvest environmental micro-energy from shallow soil, simulated analysis, theoretical arithmetic and experimental verification are performed to explore the spatiotemporal rules of heat transfer on a soil/finned tube interface. Simulations are carried out for 36 types of different working conditions, and the empirical formulas for temperature and heat flux are obtained. The temperature and heat flux can be calculated using the formulas if the soil temperature, soil moisture content and finned tube initial temperature are known. The simulations also show that the highest heat flux can reach approximately 0.30 mW/mm2, and approximately 1507.96 mW of energy can be harvested through the finned tube. Theoretical arithmetic indicates that the heat transfer rate of the copper finned tube is 76.77% higher than that of the bare tube, the highest rate obtained in any study to date. Results also show that the finned tube should be placed where the soil moisture is greater than 30% to get more heat from the soil. A field experiment is carried out in the city of Harbin in Northeast China, where a thermoelectric power generation device has been installed and temperature data have been monitored for a certain time. The results are in good agreement with those obtained from the simulation analysis. The heat transfer processes and heat transfer steady state on the soil/finned tube interface are revealed in this work and are of great importance for the use of geothermal energy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

China Postdoctoral Science Special Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3