Pattern-Based Decoding for Wi-Fi Backscatter Communication of Passive Sensors

Author:

Hwang Hwanwoong,Lim Jae-Han,Yun Ji-HoonORCID,Jeong Byung

Abstract

Ambient backscatter communication enables passive sensors to convey sensing data on ambient RF signals in the air at ultralow power consumption. To extract data bits from such signals, threshold-based decoding has generally been considered, but suffers against Wi-Fi signals due to severe fluctuation of OFDM signals. In this paper, we propose a pattern-matching-based decoding algorithm for Wi-Fi backscatter communications. The key idea is the identification of unique patterns of signal samples that arise from the inevitable smoothing of Wi-Fi signals to filter out noisy fluctuation. We provide the mathematical basis of obtaining the pattern of smoothed signal samples as the slope of a line expressed in a closed-form equation. Then, the new decoding algorithm was designed to identify the pattern of received signal samples as a slope rather than classifying their amplitude levels. Thus, it is more robust against signal fluctuation and does not need tricky threshold configuration. Moreover, for even higher reliability, the pattern was identified for a pair of adjacent bits, and the algorithm decodes a bit pair at a time rather than a single bit. We demonstrate via testbed experiments that the proposed algorithm significantly outperforms conventional threshold-based decoding variants in terms of bit error rate for various distances and data rates.

Funder

Institute for Information and communications Technology Promotion

KETEP

Kwangwoon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonsequential Link Adaptation Using Repetition Codes for Wi-Fi Backscatter Communication;IEEE Transactions on Vehicular Technology;2024-06

2. Powerless IoT Clicker System;IEEE Internet of Things Journal;2022-12-01

3. A Simple Prototype for Ambient Backscatter Communication with Multiple Reflecting Elements;2022 IEEE 19th India Council International Conference (INDICON);2022-11-24

4. Generalized Space Shift Keying for Ambient Backscatter Communication;IEEE Transactions on Communications;2022-08

5. Coherent Multiantenna Receiver for BPSK-Modulated Ambient Backscatter Tags;IEEE Internet of Things Journal;2022-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3