Enhancing Mechanical Behavior and Energy Dissipation in Fiber-Reinforced Polymers through Shape Memory Alloy Integration: A Numerical Study on SMA-FRP Composites under Cyclic Tensile Loading

Author:

Eilbeigi Saeed1,Tavakkolizadeh Mohammadreza1,Masoodi Amir R.1ORCID

Affiliation:

1. Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

Abstract

Conventional fiber-reinforced polymers (FRPs) have a relatively linear stress–strain behavior up to the failure point. Therefore, they show brittle behavior until the failure point. Shape memory alloys, in addition to having high ductility and good energy dissipation capability, are highly resistant to corrosion and show good performance against fatigue. Therefore, using the SMA fibers in the production of FRPs can be a suitable solution to solve the problem of the brittle behavior of conventional FRPs. SMA fibers can be integrated with a polymeric matrix with or without conventional fibers and create a new material called SMA-FRP. This study investigates the effect of using different volume fractions of conventional fibers (carbon, glass, and aramid) and SMA fibers (NiTi) in the super-elastic phase and the effect of the initial strain of SMA fibers on the behavior of SMA-FRP composites under cyclic tensile loading. Specimens are designed to reach a target elastic modulus and are modeled using OpenSees (v. 3.5.0) finite element software. Analyzing the results shows that in the SMA-FRP composites that are designed to reach a target elastic modulus, with an increase in the volume fraction of SMA fibers, the maximum stress, residual strain, and strain hardening ratio are reduced, and the ability to energy dissipation capability and residual stress increases. It was also observed that increasing the percentage of the initial strain of SMA fibers increases the maximum stress and energy dissipation capability and reduces the residual strain and yield stress. In the investigation of the effect of the type of conventional fibers used in the construction of composites, it was found that the use of fibers that have a larger failure strain increases the maximum stress and energy dissipation capability of the composite and reduces the strain hardening ratio. In addition, increasing the elastic modulus of conventional fibers increases the residual strain and residual stress of the composites.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3