Mitigating the Trade-Off between Non-Radiative Recombination and Charge Transport to Enable Efficient Ternary Organic Solar Cells

Author:

Zhang Yexin1,Yuan Shuai23,Zhang Congyang3,Ding Chenfeng3,Zhang Congcong4,Xu Hai1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering, Central South University, South Lushan Road, Changsha 410083, China

2. Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China

3. Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan

4. Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

Abstract

Ternary organic solar cells (OSCs) have attracted intensive studies due to their promising potential for attaining high-performing photovoltaics, whereas there has been an opening challenge in minimizing the open circuit voltage (Voc) loss while retaining the optimal carrier extraction in the multiple mixture absorbers. Here, we systemically investigate a ternary absorber comprised of two acceptors and a donor, in which the resultant Voc and fill factor are varied and determined by the ratios of acceptor components as a result of the unbalance of non-radiative recombination rates and charge transport. The transient absorption spectroscopy and electroluminescence techniques verify two distinguishable charge-transfer (CT) states in the ternary absorber, and the mismatch of non-radiative recombination rates of those two CT states is demonstrated to be associated with the Voc deficit, whilst the high-emissive acceptor molecule delivers inferior electron mobility, resulting in poor charge transport and a subpar fill factor. These findings enable us to optimize the mixture configuration for attaining the maximal-performing devices. Our results not only provide insight into maximizing the photovoltage of organic solar cells but can also motivate researchers to further unravel the photophysical mechanisms underlying the intermolecular electronic states of organic semiconductors.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Hunan Research Funding

Changsha Research Funding

Shenzhen Research Funding

State Key Laboratory of Structural Chemistry

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3