Quality Assessment of Processed Graphene Chips for Biosensor Application

Author:

Shmidt Natalia M.1,Shabunina Evgeniya I.1ORCID,Gushchina Ekaterina V.1,Petrov Vasiliy N.1,Eliseyev Ilya A.1,Lebedev Sergey P.1ORCID,Priobrazhenskii Sergei Iu.1,Tanklevskaya Elena M.1,Puzyk Mikhail V.2,Roenkov Alexander D.3,Usikov Alexander S.3,Lebedev Alexander A.1ORCID

Affiliation:

1. Ioffe Institute, 26 Politekhnicheskaya, 194021 St. Petersburg, Russia

2. Faculty of Chemistry, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia

3. Nitride Crystals Group, 194156 St. Petersburg, Russia

Abstract

The quality of graphene intended for use in biosensors was assessed on manufactured chips using a set of methods including atomic force microscopy (AFM), Raman spectroscopy, and low-frequency noise investigation. It is shown that local areas of residues on the graphene surface, formed as a result of the interaction of graphene with a photoresist at the initial stage of chip development, led to a spread of chip resistance (R) in the range of 1–10 kOhm and to an increase in the root mean square (RMS) roughness up to 10 times, which can significantly worsen the reproducibility of the parameters of graphene chips for biosensor applications. It was observed that the control of the photoresist residues after photolithography (PLG) using AFM and subsequent additional cleaning reduced the spread of R values in chips to 1–1.6 kOhm and obtained an RMS roughness similar to the roughness in the graphene film before PLG. Monitoring of the spectral density of low-frequency voltage fluctuation (SU), which provides integral information about the system of defects and quality of the material, makes it possible to identify chips with low graphene quality and with inhomogeneously distributed areas of compressive stresses by the type of frequency dependence SU(f).

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3