Antibacterial and Antifungal Properties of Polyester, Polylactide, and Cotton Nonwovens and Fabrics, by Means of Stable Aqueous Dispersions Containing Copper Silicate and Some Metal Oxides

Author:

Chruściel Jerzy J.12,Olczyk Joanna12,Kudzin Marcin H.12,Kaczmarek Piotr13,Król Paulina14,Tarzyńska Nina14ORCID

Affiliation:

1. Łukasiewicz Research Network—Lodz Institute of Technology, Brzezińska 5/15, 92-103 Łódź, Poland

2. Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland

3. Biodegradation and Microbiological Research Laboratory, Brzezińska 5/15, 92-103 Łódź, Poland

4. Biomedical Engineering Center, Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland

Abstract

Literature reviews have described the applications of silver, copper, and zinc ions and metallic particles of Cu, Ti, and Zn oxides, which have been found to be useful antimicrobial reagents for the biofunctionalization of various materials and their surfaces. For this purpose, compositions of water dispersions containing emulsions of synthetic copolymers based on acrylic and vinyl monomers, polysaccharides (hydroxyethyl cellulose and starch), and various additives with wetting and stabilizing properties were used. Many stable water dispersions of different chemical compositions containing bioactive chemical compounds (copper silicate hydrate, titanium dioxide, and zinc oxide (and other auxiliary substances)) were developed. They were used for the preparation of thin hybrid coatings having good antimicrobial properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast fungus (Candida albicans). Polyester (PES) and polylactide (PLA) nonwovens were modified using the dip-coating method, while PES and cotton fabrics were biofunctionalized by means of dip-coating and coating methods. The antimicrobial (antibacterial and antifungal) properties of the textile materials (nonwovens and fabrics) biofunctionalized with the above-mentioned bioactive agents exhibiting antimicrobial properties (CuSiO3, TiO2, ZnO, or ZnO∙SiO2) were strongly dependent on the agents’ content in the water dispersions. The PES and PLA nonwovens, modified on the surface with water compositions containing copper silicate hydrate, showed good antibacterial properties against the Gram-negative bacteria Escherichia coli, even at a content of 1 wt.% CuSiO3∙xH2O, and against the Gram-positive bacteria Staphylococcus aureus, at the content of at least 5 wt.% CuSiO3∙xH2O. The bacterial growth reduction factor (R) was greater than 99% for most of the samples tested. Good antifungal properties against the fungus Candida albicans were found for the PES and PLA nonwoven fabrics modified with dispersions containing 5–7 wt.% CuSiO3∙xH2O and 4.2–5.0 wt.% TiO2. The addition of TiO2 led to a significant improvement in the antifungal properties of the PES and PLA nonwovens modified in this way. For the samples of PES WIFP-270 and FS F-5 nonwovens, modified with water dispersions containing 5.0 wt.% CuSiO3∙xH2O and 4.2–5.0 wt.% TiO2, the growth reduction factor for the fungus Candida albicans (R) reached values in the range of 80.9–98.0%. These new biofunctionalized polymeric nonwoven textile materials can find practical applications in the manufacture of filters for hospital air-conditioning systems and for the automotive industry, as well as in air purification devices. Moreover, similar antimicrobial modification of fabrics with the dip-coating or coating methods can be applied, for example, in the fabrication of fungi- and mold-resistant garden furniture.

Funder

Ministry of Education and Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3