Deformation-Induced Surface Roughening of an Aluminum–Magnesium Alloy: Experimental Characterization and Crystal Plasticity Modeling

Author:

Korkolis Yannis P.1ORCID,Knysh Paul2,Sasaki Kanta3,Furushima Tsuyoshi4,Knezevic Marko2

Affiliation:

1. Department of Integrated Systems Engineering, The Ohio State University, 234 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA

2. Department of Mechanical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA

3. Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan

4. Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan

Abstract

The deformation-induced surface roughening of an Al-Mg alloy is analyzed using a combination of experiments and modeling. A mesoscale oligocrystal of AA5052-O, obtained by recrystallization annealing and subsequent thickness reduction by machining, that contains approx. 40 grains is subjected to uniaxial tension. The specimen contains one layer of grains through the thickness. A laser confocal microscope is used to measure the surface topography of the deformed specimen. A finite element model with realistic (non-columnar) shapes of the grains based on a pair of Electron Back-Scatter Diffraction (EBSD) scans of a given specimen is constructed using a custom-developed shape interpolation procedure. A Crystal Plasticity Finite Element (CPFE) framework is then applied to the voxel model of the tension test of the oligocrystal. The unknown material parameters are determined inversely using an efficient, custom-built optimizer. Predictions of the deformed shape of the specimen, surface topography, evolution of the average roughness with straining and texture evolution are compared to experiments. The model reproduces the averaged features of the problem, while missing some local details. As an additional verification of the CPFE model, the statistics of surface roughening are analyzed by simulating uniaxial tension of an AA5052-O polycrystal and comparing it to experiments. The averaged predictions are found to be in good agreement with the experimentally observed trends. Finally, using the same polycrystalline specimen, texture–morphology relations are discovered, using a symbolic Monte Carlo approach. Simple relations between the Schmid factor and roughness can be inferred purely from the experiments. Novelties of this work include: realistic 3D shapes of the grains; efficient and accurate identification of material parameters instead of manual tuning; a fully analytical Jacobian for the crystal plasticity model with quadratic convergence; novel texture–morphology relations for polycrystal.

Funder

NSF

JSPS KAKENHI Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3