Preparation of Self-Coating Al2O3 Bonded SiAlON Porous Ceramics Using Aluminum Dross and Silicon Solid Waste under Ambient Air Atmosphere

Author:

Liu Zhaoyang12,Wang Junyang2,Zhao Zixu2,Yang Qiuyu2,Qin Lihang2,Zhang Kaichen2,Wang Xiangnan3,Su Nan4,Wen Tianpeng12,Yuan Lei12,Yu Jingkun2

Affiliation:

1. Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), Northeastern University, Shenyang 110819, China

2. School of Metallurgy, Northeastern University, Shenyang 110819, China

3. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. Sinosteel Equipment & Engineering Co., Ltd., Beijing 100080, China

Abstract

Al2O3-bonded SiAlON ceramic with self-coating was prepared using aluminum dross and silicon solid waste as starting materials under ambient air conditions. The changes in phase, microstructure, and physical properties of the ceramic with temperature were analyzed and the formation mechanism of the SiAlON phase was elucidated. The results showed that higher temperature was more suitable for the preparation of SiAlON ceramics. As the temperature increased from 1400 to 1600 °C, the main phases in the ceramic transformed from mullite, Al2O3, and SiAlON to Al2O3 and SiAlON. An Al2O3-rich layer spontaneously coated the surface of the porous ceramic as Al melted and oxidized at high temperature. The thickness of this layer decreased as the temperature increased. The presence of Al2O3-rich coating layer impeded air flow, allowing nitriding of Si and Al, and the formation of the SiAlON phase in ambient air conditions. This study not only presents a strategy to successfully recycle aluminum dross and silicon solid waste but also offers a straightforward approach to preparing SiAlON material in air atmosphere.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3